Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.382
Filter
1.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 270-278, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38644273

ABSTRACT

Objective: To analyze serum bile acid profiles in pregnant women with normal pregnancy, intrahepatic cholestasis of pregnancy (ICP) and asymptomatic hypercholanemia of pregnancy (AHP), and to evaluate the application value of serum bile acid profiles in the diagnosis of ICP and AHP. Methods: The clinical data of 122 pregnant women who underwent prenatal examination in Xuzhou Maternal and Child Health Care Hospital from June 2022 to May 2023 were collected, including 54 cases of normal pregnancy group, 28 cases of ICP group and 40 cases of AHP group. Ultraperformance liquid chromatography-tandem mass spectrometry was used to measure the levels of 15 serum bile acids in each group, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), glycolcholic acid (GCA), glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), glycoursodeoxycholic acid (GUDCA), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA) and tauroursodeoxycholic acid (TUDCA). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to screen differential bile acids. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficacy of differential bile acids and combined indicators between groups. Results: (1) Compared with normal pregnancy group, the serum levels of LCA, GCA, GCDCA, GDCA, GLCA, UDCA, TCA, TCDCA, TDCA, TLCA, GUDCA and TUDCA in ICP group were significantly different (all P<0.05), while the levels of LCA, DCA, GCA, GCDCA, GDCA, GLCA, TCA, TCDCA, TDCA, TLCA, GUDCA and TUDCA in AHP group were significantly different (all P<0.05). Compared with ICP group, the serum levels of CDCA, DCA, UDCA, TDCA, GUDCA and TUDCA in AHP group were significantly different (all P<0.05). (2) In the OPLS-DA model, the differential bile acids between ICP group and AHP group were TUDCA, TCA, UDCA, GUDCA and GCA, and their variable importance in projection (VIP) were 1.489, 1.345, 1.344, 1.184 and 1.111, respectively. TCA, GCDCA, GCA, TDCA, GDCA and TCDCA were the differentially expressed bile acids between AHP group and normal pregnancy group, and their VIP values were 1.236, 1.229, 1.197, 1.145, 1.139 and 1.138, respectively. (3) ROC analysis showed that the area under the curve (AUC) of TUDCA, TCA, UDCA, GUDCA and GCA in the differential diagnosis of ICP and AHP was 0.860, and the sensitivity and specificity were 67.9% and 95.0%, respectively. The AUC of TCA, GCDCA, GCA, TDCA, GDCA and TCDCA in the diagnosis of AHP was 0.964, and the sensitivity and specificity were 95.0% and 93.1%, respectively. Conclusions: There are differences in serum bile acid profiles among normal pregnant women, ICP and AHP. The serum bile acid profiles of pregnant women have potential application value in the differential diagnosis of ICP and AHP and the diagnosis of AHP.


Subject(s)
Bile Acids and Salts , Cholestasis, Intrahepatic , Pregnancy Complications , Humans , Female , Pregnancy , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/diagnosis , Bile Acids and Salts/blood , Pregnancy Complications/blood , Pregnancy Complications/diagnosis , Adult , Tandem Mass Spectrometry/methods , Sensitivity and Specificity , ROC Curve
2.
Signal Transduct Target Ther ; 9(1): 97, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664391

ABSTRACT

Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.


Subject(s)
Bile Acids and Salts , Signal Transduction , Bile Acids and Salts/metabolism , Humans , Signal Transduction/drug effects , Animals , Ceramides/metabolism , Ceramides/genetics
3.
Gut Microbes ; 16(1): 2340487, 2024.
Article in English | MEDLINE | ID: mdl-38626129

ABSTRACT

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Pediatric Obesity , Prevotella , Humans , Child , Animals , Mice , Insulin , Bile Acids and Salts/pharmacology , Blood Glucose , Mice, Obese , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
4.
Curr Microbiol ; 81(5): 137, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597994

ABSTRACT

Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.


Subject(s)
Anti-Infective Agents , Lactobacillus , Animals , Humans , Fermented Beverages , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts
5.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570789

ABSTRACT

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Subject(s)
Bile Acids and Salts , Enterococcus faecium , Bile Acids and Salts/pharmacology , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Deoxycholic Acid/pharmacology , Proteomics , Cholic Acid , Chenodeoxycholic Acid/metabolism , Enterococcus
6.
Korean J Gastroenterol ; 83(4): 133-142, 2024 Apr 25.
Article in Korean | MEDLINE | ID: mdl-38659249

ABSTRACT

Diarrhea is a very common gastrointestinal symptom, and the presence of higher concentrations of bile acid in the colon leads to bile acid diarrhea (BAD). In BAD patients, a portion of bile from the small intestine that is normally controlled by enterohepatic circulation is present at a high concentration in the lumen of the large intestine, resulting in increased motility and secretion of the large intestine. The prevalence of BAD is estimated to be 1-2% of the general population, and it comprises one-third of the instances of diarrhea-predominant irritable bowel syndrome. The clinical symptoms of BAD include chronic diarrhea, increased frequency of defecation, urgency to defecate, fecal incontinence, and cramping abdominal pain. The pathophysiology of BAD has not yet been fully elucidated. However, recent studies have reported increased intestinal permeability, shortened intestinal transit time, and changes in the intestinal microbial community to be the possible causes of BAD. Although fecal and serum bile acid tests are widely used for diagnosis, new test methods that are non-invasive, inexpensive, and have high sensitivity and specificity are needed at various institutions to facilitate the diagnosis. The selenium homo-tauro-cholic acid (SeHCAT) test is the gold standard for BAD diagnosis and severity assessment. The validation of several other serum markers, such as 7-hydroxy-4-cholesten-3-one (serum 7αC4) and the fibroblast growth factor 19 (FGF19) for use in clinical practice is ongoing. Although bile acid sequestrants are the mainstay of treatment, the development of drugs that are more effective and have better compliance is required. Farnesoid X receptor (FXR) agonists are showing promising results.


Subject(s)
Bile Acids and Salts , Diarrhea , Humans , Diarrhea/etiology , Diarrhea/diagnosis , Bile Acids and Salts/metabolism
7.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613030

ABSTRACT

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Subject(s)
Camellia sinensis , Hyperlipidemias , Humans , Tea , Hyperlipidemias/drug therapy , Hyperlipidemias/prevention & control , Fermentation , Bile Acids and Salts
8.
Nutrients ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38613095

ABSTRACT

The relationship between bile acids (BAs) and adverse cardiovascular events following acute coronary syndrome (ACS) have been little investigated. We aimed to examine the associations of BAs with the risk of cardiovascular events and all-cause mortality in ACS. We conducted a prospective study on 309 ACS patients who were followed for 10 years. Plasma BAs were quantified by liquid chromatography coupled to tandem mass spectrometry. Cox regression analyses with elastic net penalties were performed to associate BAs with MACE and all-cause mortality. Weighted scores were computed using the 100 iterated coefficients corresponding to each selected BA, and the associations of these scores with these adverse outcomes were assessed using multivariable Cox regression models. A panel of 10 BAs was significantly associated with the increased risk of MACE. The hazard ratio of MACE per SD increase in the estimated BA score was 1.35 (95% CI 1.12-1.63). Furthermore, four BAs were selected from the elastic net model for all-cause mortality, although their weighted score was not independently associated with mortality. Our findings indicate that primary and secondary BAs may play a significant role in the development of MACE. This insight holds potential for developing strategies to manage ACS and prevent adverse outcomes.


Subject(s)
Acute Coronary Syndrome , Cardiovascular System , Humans , Prospective Studies , Bile Acids and Salts , Chromatography, Liquid
9.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632312

ABSTRACT

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Animals , Mice , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Humidity , Proteomics , RNA, Ribosomal, 16S , Temperature , Transcription Factors , Bile Acids and Salts , Lithocholic Acid
10.
Food Funct ; 15(8): 4446-4461, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563504

ABSTRACT

High protein and fiber diets are becoming increasingly popular for weight loss; however, the benefits or risks of high protein and fiber diets with a normal calorie level for healthy individuals still need to be elucidated. In this study, we explored the role and mechanisms of long-term high protein and/or konjac glucomannan diets on the metabolic health of healthy mouse models. We found that high konjac glucomannan contents improved the glucose tolerance of mice and both high protein and high konjac glucomannan contents improved the serum lipid profile but increased the TNF-α levels. In the liver, high dietary protein contents reduced the expression of the FASN gene related to fatty acid synthesis. Interactions of dietary protein and fiber were shown in the signaling pathways related to lipid and glucose metabolism of the liver and the inflammatory status of the colon, wherein the high protein and high konjac glucomannan diet downregulated the expression of the SREBF1 and FXR genes in the liver and downregulated the expression of TNF-α genes in the colon compared to the high protein diet. High konjac glucomannan contents reduced the colonic secondary bile acid levels including DCA and LCA; this was largely associated with the changed microbiota profile and also contributed to improved lipid and glucose homeostasis. In conclusion, high protein diets improved lipid homeostasis and were not a risk to metabolic health, while high fiber diets improved glucose and lipid homeostasis by modulating colonic microbiota and bile acid profiles, and a high protein diet supplemented with konjac glucomannan might improve hepatic lipid homeostasis and colonic inflammation in healthy mouse models through long-term intervention.


Subject(s)
Bile Acids and Salts , Colon , Gastrointestinal Microbiome , Glucose , Lipid Metabolism , Mannans , Mice, Inbred C57BL , Animals , Mannans/pharmacology , Mice , Lipid Metabolism/drug effects , Gastrointestinal Microbiome/drug effects , Male , Bile Acids and Salts/metabolism , Colon/metabolism , Colon/microbiology , Glucose/metabolism , Dietary Proteins/metabolism , Dietary Proteins/pharmacology , Liver/metabolism , Dietary Fiber/pharmacology , Dietary Fiber/metabolism
11.
PLoS One ; 19(4): e0301824, 2024.
Article in English | MEDLINE | ID: mdl-38578745

ABSTRACT

Biliary atresia is a neonatal disease characterized by damage, inflammation, and fibrosis of the liver and bile ducts and by abnormal bile metabolism. It likely results from a prenatal environmental exposure that spares the mother and affects the fetus. Our aim was to develop a model of fetal injury by exposing pregnant mice to low-dose biliatresone, a plant toxin implicated in biliary atresia in livestock, and then to determine whether there was a hepatobiliary phenotype in their pups. Pregnant mice were treated orally with 15 mg/kg/d biliatresone for 2 days. Histology of the liver and bile ducts, serum bile acids, and liver immune cells of pups from treated mothers were analyzed at P5 and P21. Pups had no evidence of histological liver or bile duct injury or fibrosis at either timepoint. In addition, growth was normal. However, serum levels of glycocholic acid were elevated at P5, suggesting altered bile metabolism, and the serum bile acid profile became increasingly abnormal through P21, with enhanced glycine conjugation of bile acids. There was also immune cell activation observed in the liver at P21. These results suggest that prenatal exposure to low doses of an environmental toxin can cause subclinical disease including liver inflammation and aberrant bile metabolism even in the absence of histological changes. This finding suggests a wide potential spectrum of disease after fetal biliary injury.


Subject(s)
Benzodioxoles , Biliary Atresia , Gallbladder Diseases , Pregnancy , Female , Animals , Mice , Biliary Atresia/metabolism , Liver/metabolism , Bile Ducts/pathology , Gallbladder Diseases/complications , Inflammation/pathology , Fibrosis , Bile Acids and Salts
12.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38574780

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Polygala , Rats , Mice , Animals , Rats, Sprague-Dawley , 1-Naphthylisothiocyanate/toxicity , China , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Cholestasis, Intrahepatic/chemically induced , Isothiocyanates/adverse effects , Isothiocyanates/metabolism , Bile Acids and Salts/metabolism
13.
J Nutr ; 154(4): 1321-1332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582699

ABSTRACT

BACKGROUND: Obesity is a progressive metabolic disease that begins with lipid metabolism disorders. Aromatic amino acids (AAAs), including tryptophan, phenylalanine, and tyrosine, have diverse biological activities as nutrients. However, the underlying mechanisms by which AAAs affect lipid metabolism are unclear. OBJECTIVES: This study was designed to investigate the possible roles and underlying molecular mechanisms of AAA in the pathogenesis of lipid metabolism disorders. METHODS: We added an AAA mixture to the high-fat diet (HFD) of mice. Glucose tolerance test was recorded. Protein expression of hepatic bile acid (BA) synthase and mRNA expression of BA metabolism-related genes were determined. Hepatic BA profiles and gut microbial were also determined in mice. RESULTS: The results showed that AAA significantly increased body weight and white adipose tissue, aggravated liver injury, impaired glucose tolerance and intestinal integrity, and significantly increased hepatic BA synthesis by inhibiting intestinal farnesoid X receptor (FXR). Moreover, AAA increased the content of total BA in the liver and altered the hepatic BA profile, with elevated levels of lithocholic acid, glycochenodeoxycholic acid, and glycoursodeoxycholic acid. AAA markedly increased the levels of proteins involved in BA synthesis (cholesterol 7α-hydroxylase and oxysterol 7α-hydroxylase) and inhibited the intestinal FXR. Gut microbial composition also changed, reducing the abundance of some beneficial bacteria, such as Parvibacter and Lactobacillus. CONCLUSIONS: Under HFD conditions, AAAs stimulate BA synthesis in both the classical and alternative pathways, leading to aggravation of liver injury and fat deposition. Excessive intake of AAA disrupts BA metabolism and contributes to the development of lipid metabolism disorders, suggesting that AAA may be a causative agent of lipid metabolism disorders.


Subject(s)
Lipid Metabolism Disorders , Lipid Metabolism , Mice , Animals , Amino Acids, Aromatic , Liver/metabolism , Lipid Metabolism Disorders/metabolism , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
14.
Food Res Int ; 184: 114255, 2024 May.
Article in English | MEDLINE | ID: mdl-38609233

ABSTRACT

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.


Subject(s)
Bile , Linoleic Acid , Emulsions , Lipolysis , Chemical Phenomena , Bile Acids and Salts
15.
AAPS J ; 26(3): 46, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609650

ABSTRACT

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Subject(s)
Desoxycorticosterone Acetate , Hemochromatosis , Humans , Deferoxamine , Hyaluronic Acid , Bile Acids and Salts
16.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564866

ABSTRACT

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Subject(s)
Aldicarb , Insecticides , Humans , Mice , Animals , Bile Acids and Salts , Oxylipins , Mice, Inbred C57BL , Hormones , Homeostasis
17.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587078

ABSTRACT

Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Bile Acids and Salts , Cholesterol/metabolism , Glucose , Obesity/metabolism
18.
Immunity ; 57(4): 834-836, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599174

ABSTRACT

Various microbial metabolites promote cell transformation. In this issue of Immunity, Cong et al. show that deoxycholic acid (DCA), a microbial metabolite of bile, promotes tumor growth by suppressing antitumor CD8+ T cell responses via dysregulation of calcium efflux.


Subject(s)
Deoxycholic Acid , Neoplasms , Humans , Bile , Apoptosis , Bile Acids and Salts
19.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38560889

ABSTRACT

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Subject(s)
Bile Acids and Salts , Zearalenone , Humans , Rats , Male , Female , Animals , Bile Acids and Salts/metabolism , Zearalenone/metabolism , Liver/metabolism , Hypothalamus , Eating
20.
BMC Pregnancy Childbirth ; 24(1): 245, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582906

ABSTRACT

BACKGROUND AND AIMS: To investigate the impact of intrahepatic cholestasis of pregnancy (ICP) with hepatitis B virus (HBV) infection on pregnancy outcomes. METHODS: We selected 512 pregnant women, collected the data including maternal demographics, main adverse pregnancy outcomes and maternal HBV infected markers HBeAg and HBV-DNA loads status, then have a comparative analysis. RESULTS: There were 319 solitary ICP patients without HBV infection (Group I) and 193 ICP patients with HBV infection. Of the latter, there were 118 cases with abnormal liver function(Group II) and 80 cases with normal liver function(Group III). All HBV-infected pregnant women with ICP were divided into hepatitis Be antigen (HBeAg)-positive group (102 cases) and HBeAg-negative group (91 cases), according to the level of the serum HBeAg status; and into high viral load group (92 cases), moderate viral load group (46 cases) and low viral load group (55 cases) according to the maternal HBV-DNA level. Group II had a higher level of serum total bile acids, transaminase, bilirubin as well as a higher percentage of premature delivery, neonatal intensive care unit (NICU) admission and meconium-stained amniotic fluid (MSAF) compared with the other two groups(P < 0.05), but there were no significant differences in the above indicators between the Group I and Group III. Among the HBV-infected patients with ICP, HBeAg-positive group had a higher level of serum transaminase, bilirubin and bile acid as well as earlier gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission than HBeAg-negative group (P < 0.05). Those with a high viral load (HBV-DNA > 106 IU/ml) had a higher level of transaminase, bilirubin, and bile acid as well as shorter gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission compared with those with a low or moderate viral load (P < 0.05). CONCLUSION: HBV-infected pregnant women with ICP combined with abnormal liver function have more severe liver damage, a higher percentage of preterm birth and NICU admission. HBeAg-positive status and a high HBV-DNA load will increase the severity of conditions in HBV-infected pregnant women with ICP. HBV-infected patients with ICP who have abnormal liver function, HBeAg-positive or a high viral load should be treated more actively.


Subject(s)
Cholestasis, Intrahepatic , Hepatitis B , Pregnancy Complications, Infectious , Pregnancy Complications , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Hepatitis B virus , Retrospective Studies , Hepatitis B e Antigens , Birth Weight , DNA, Viral , Hepatitis B Surface Antigens , Premature Birth/epidemiology , Hepatitis B/complications , Pregnancy Outcome/epidemiology , Transaminases , Bile Acids and Salts , Bilirubin
SELECTION OF CITATIONS
SEARCH DETAIL
...